Pruritus (PDQ®): Supportive care - Health Professional Information [NCI]

Pruritus (PDQ®): Supportive care - Health Professional Information [NCI]

This information is produced and provided by the National Cancer Institute (NCI). The information in this topic may have changed since it was written. For the most current information, contact the National Cancer Institute via the Internet web site at http://cancer.gov or call 1-800-4-CANCER.

Overview

Pruritus is usually an unpleasant sensation that elicits a desire to scratch, subjectively quantified by intensity, severity, location, and intractability. It may be proposed that itch is akin to pain because both sensations are thought to be transmitted from skin to central nervous system (CNS) through nociceptive small-caliber C nerve fibers.[1] The perception of pruritus, much like the perception of pain, is greatly altered by psychological and CNS factors, thereby accounting for the great subjective variability between individuals in perceived pruritus from the same pruritogen. Because of the subjective nature of pruritus, the lack of a precise definition, and only recent development of a suitable murine model, pruritus is a disorder that has not been researched adequately.[2]

For the purpose of this discussion, a focus will be placed on pruritus in the absence of a primary dermatosis, as is often encountered in patients receiving cancer treatment. However, there may still be significant secondary skin change noted in the form of lichen simplex chronicus, prurigo nodules, linear excoriations, linear petechiae, or superficial erosions in places the patient can reach to scratch (either with fingernails, back scratchers, or makeshift tools).

It is estimated that pruritus is a manifestation of an underlying systemic disease in approximately 10% to 25% of affected individuals.[3] In a single-institution retrospective review, patients seeking care for pruritus were more likely to have a concomitant diagnosis of cancer than were patients without pruritus (odds ratio [OR], 5.76; 95% confidence interval, 5.53–6.00). The OR for malignancy was higher in White patients than in African American patients.[4] Nondermatologic conditions that can lead to generalized pruritus include the following:[3]

  • Hepatic, renal, or thyroid dysfunction.
  • Malignancies: lymphoma, chronic lymphocytic leukemia, and cancers of the liver, gallbladder, biliary tract, and skin.[4]
  • Myeloproliferative neoplasms (e.g., polycythemia vera).
  • HIV or parasitic infections.
  • Neuropsychiatric disorders.

Despite the wide array of diseases that may present with pruritus, a systematic evaluation of the differential using a good history, review of systems, and appropriate blood work will lead to a rational and finite group of etiologies. Then correction of the underlying cause (if possible) and treatment of the pruritus with currently available therapies may ensue.

In this summary, unless otherwise stated, evidence and practice issues as they relate to adults are discussed. The evidence and application to practice related to children may differ significantly from information related to adults. When specific information about the care of children is available, it is summarized under its own heading.

References:

  1. Schmelz M: A neural pathway for itch. Nat Neurosci 4 (1): 9-10, 2001.
  2. Feng J, Yang P, Mack MR, et al.: Sensory TRP channels contribute differentially to skin inflammation and persistent itch. Nat Commun 8 (1): 980, 2017.
  3. Weisshaar E, Fleischer AB Jr, Bernhard JD, et al.: Pruritus and dysesthesia. In: Bolognia JL, Jorizzo JL, Schaffer JV: Dermatology. 3rd ed. Elsevier Saunders, 2012, pp 111-25.
  4. Larson VA, Tang O, Ständer S, et al.: Association between itch and cancer in 16,925 patients with pruritus: Experience at a tertiary care center. J Am Acad Dermatol 80 (4): 931-937, 2019.

Etiology / Pathophysiology

When a primary dermatitis is present, the differential may be narrowed by the history and physical findings, such as:

  • Stigmata of atopic dermatitis.
  • Psoriasis.
  • Scabies.
  • Allergic contact dermatitis.
  • Primary cutaneous lymphoma.

Biopsy of skin dermatitis may be extraordinarily helpful in this scenario if the etiology is not readily evident from history and physical exam alone. In contrast, Table 1 provides a list of differential diagnoses for when there is little or no primary dermatitis identifiable. Where available, the incidence of pruritus in that condition is given.

Table 1. Pruritus Differential With Little or No Primary Dermatitis
Disease State Prevalence of Pruritus (%)
HMG-CoA = 3-hydroxy-3-methyl-glutaryl–coenzyme A; IgE = immunoglobulin E.
Neoplastic  
– Hodgkin disease 30[1]
– Non-Hodgkin lymphoma 15[2]
– Leukemias 5[3]
– Carcinoid syndrome  
– Paraproteinemias  
Iron deficiency anemia  
Polycythemia rubra vera ≤50[4]
Hyper-IgE syndromes  
Parasitic helminthic infection  
Drug-induced eosinophilia  
Chronic renal insufficiency 57[5]
Liver disease  
– Primary biliary cirrhosis 69[6]
– Viral hepatitis infection 15[7]
– Cholestatic disease  
– Autoimmune hepatitis  
Thyroid dysfunction  
– Hashimoto thyroiditis  
– Hypothyroidism  
– Hyperthyroidism  
Medication induced  
– Opioids (codeine, morphine, butorphanol)  
– Hydroxyethyl starch  
– Antimalarials (chloroquine, hydroxychloroquine, quinacrine)  
– 8-methoxypsoralen  
– Beta blockers  
– Hormones (estrogens, testosterone, progestins, anabolic steroids)  
– Phenothiazines  
– Aspirin  
– HMG-CoA reductase inhibitors  
Diabetes mellitus  
HIV infection  
Post-herpetic neuralgia ≤60[8]
Pregnancy 18[3]
Xerosis  
Psychogenic (somatization, anxiety, depression, neurosis)  
Stroke sequelae  
Multiple sclerosis  

As evident from the differential, a solid history and physical are essential for sorting through the possibilities. To corroborate the clinical impression, a limited number of laboratory and radiological examinations also may be used to rule in or rule out many of the possibilities. For more information, see the Assessment section.

Hypothesized mechanisms of pruritus have been inferred from studies of pain because pain and itching share common molecular and neurophysiological mechanisms.[9] Both itch and pain sensations result from the activation of a network of free nerve endings at the dermal-epidermal junction. Activation may be the result of internal or external thermal, mechanical, chemical, or electrical stimulation. The cutaneous nerve stimulation is activated or mediated by several substances, including the following:

  • Histamine.
  • Vasoactive peptides.
  • Enkephalins.
  • Substance P (a tachykinin that affects smooth muscle).
  • Prostaglandins.
  • Interleukins (IL-4, IL-13, IL-31).[10]

It is believed that nonanatomic factors (such as psychological stress, tolerance, and presence and intensity of other sensations and/or distractions) determine itch sensitivity in different regions of the body.

The itch impulse is transmitted along the same neural pathway as pain impulses, i.e., traveling from peripheral nerves to the dorsal horn of the spinal cord, across the cord via the anterior commissure, and ascending along the spinothalamic tract to the laminar nuclei of the contralateral thalamus. Thalamocortical tracts of tertiary neurons are believed to relay the impulse through the integrating reticular activating system of the thalamus to several areas of the cerebral cortex. Factors that are believed to enhance the sensation of itch include:[9,11,12,13]

  • Dryness of the epidermis and dermis.
  • Anoxia of tissues.
  • Dilation of the capillaries.
  • Irritating stimuli.
  • Psychological responses.

The motor response of scratching follows the perception of itch. Scratching is modulated at the corticothalamic center and is a spinal reflex. Itching may be relieved for 15 to 25 minutes after scratching. The mechanism through which the itch is relieved by scratching is unknown. It is hypothesized that scratching generates sensory impulses that break circuits in the relay areas of the spinal cord. Scratching may actually enhance the sensation of itching, creating a characteristic itch-scratch-itch cycle. Other physical stimuli such as vibration, heat, cold, and ultraviolet radiation diminish itching and increase the release of proteolytic enzymes, potentially eliciting the itch-scratch-itch cycle.

A pinprick near or in the same dermatome as an itchy point will abolish the itch sensation.[12] It is known that hard scratching may substitute pain for the itch, and in some instances, the patient might find pain the more tolerable sensation. It is thought that spinal modulation of afferent stimuli (Gate theory) and central mechanisms may play a role in the relief of itch.[12]

Hypothesized pathogenesis of pruritus associated with underlying disease states are varied. Biliary, hepatic, renal, and malignant diseases are thought to produce pruritus through circulating toxic substances. Histamine released from circulating basophils and the release of leukopeptidase from white blood cells may trigger pruritus associated with lymphomas and leukemias. Elevated blood levels of kininogen in Hodgkin lymphoma, the release of histamine or bradykinin precursors from solid tumors, and the release of serotonin in carcinoids may all be related to pruritus.[11,14]

People receiving cytotoxic chemotherapy, radiation therapy, and/or biologic response modifiers for the treatment of malignancy are likely to experience pruritus. This same population is quite likely to be exposed to many of the other etiologic factors relating to pruritus, ranging from nutrition-related xerosis (dry skin) to radiation desquamation, chemotherapy-induced and biologic agent–induced side effects, antibiotic reactions, and other drug sensitivities. Because many of these therapies lead to decreased cell turnover, skin can become thin, atrophic, and dehydrated. Long-term xerosis may also occur with poor recovery of sweat, sebaceous, and apocrine gland function after a course of cytotoxic therapy.

References:

  1. Gobbi PG, Attardo-Parrinello G, Lattanzio G, et al.: Severe pruritus should be a B-symptom in Hodgkin's disease. Cancer 51 (10): 1934-6, 1983.
  2. Kumar SS, Kuruvilla M, Pai GS, et al.: Cutaneous manifestations of non-Hodgkin's lymphoma. Indian J Dermatol Venereol Leprol 69 (1): 12-5, 2003 Jan-Feb.
  3. Weisshaar E, Dalgard F: Epidemiology of itch: adding to the burden of skin morbidity. Acta Derm Venereol 89 (4): 339-50, 2009.
  4. Diehn F, Tefferi A: Pruritus in polycythaemia vera: prevalence, laboratory correlates and management. Br J Haematol 115 (3): 619-21, 2001.
  5. Duque MI, Thevarajah S, Chan YH, et al.: Uremic pruritus is associated with higher kt/V and serum calcium concentration. Clin Nephrol 66 (3): 184-91, 2006.
  6. Rishe E, Azarm A, Bergasa NV: Itch in primary biliary cirrhosis: a patients' perspective. Acta Derm Venereol 88 (1): 34-7, 2008.
  7. Cribier B, Samain F, Vetter D, et al.: Systematic cutaneous examination in hepatitis C virus infected patients. Acta Derm Venereol 78 (5): 355-7, 1998.
  8. Oaklander AL, Bowsher D, Galer B, et al.: Herpes zoster itch: preliminary epidemiologic data. J Pain 4 (6): 338-43, 2003.
  9. Greaves MW: Pathophysiology of pruritus. In: Fitzpatrick TB, Eisen AZ, Wolff K, et al., eds.: Dermatology in General Medicine. 3rd ed. McGraw-Hill, 1987, Chapter 7, pp 74-78.
  10. Erickson S, Nahmias Z, Rosman IS, et al.: Immunomodulating Agents as Antipruritics. Dermatol Clin 36 (3): 325-334, 2018.
  11. Abel EA, Farber EM: Malignant cutaneous tumors. In: Rubenstein E, Federman DD, eds.: Scientific American Medicine. Scientific American, Inc, Chapter 2: Dermatology, Section XII, 1-20, 1992.
  12. Bernhard JD: Clinical aspects of pruritus. In: Fitzpatrick TB, Eisen AZ, Wolff K, et al., eds.: Dermatology in General Medicine. 3rd ed. McGraw-Hill, 1987, Chapter 7, pp 78-90.
  13. Duncan WC, Fenske NA: Cutaneous signs of internal disease in the elderly. Geriatrics 45 (8): 24-30, 1990.
  14. Abel EA, Farber EM: Drug eruptions and urticaria. In: Rubenstein E, Federman DD, eds.: Scientific American Medicine. Scientific American, Inc, Chapter 2: Dermatology, Section VI, 1-11, 1990.

Assessment

Pruritus is a symptom, not a diagnosis or disease. Generalized pruritus should be investigated because of its strong medical significance, as outlined above, particularly if it is interfering with daily activities or sleep, and/or is intractable. For more information, see the Etiology/Pathophysiology section. Assessment of pruritus must incorporate an accurate and thorough history and physical examination.[1]

A history includes the following data:

  • Location, onset, duration, and intensity of itching.
  • Effect on activities of daily living or sleep.
  • Factors that relieve and aggravate itching.
  • Other family members or pets affected.
  • History of pruritus.
  • History of malignant disease.
  • Current malignant disease and treatment.
  • Nonmalignant systemic diseases.
  • Use of medications (analgesics, antibiotics, and other prescription and nonprescription drugs, including illicit drugs).
  • Nutritional and fluid level status.
  • Social history (hobbies, occupation, sexual history, and travel).
  • Current skin care practices.
  • Patient's emotional state.

A physical examination will provide data from an assessment of the following:

  • All skin surfaces for signs of infection.
  • All skin surfaces for signs of primary dermatitis (e.g., drug reaction, psoriasis, atopic dermatitis, connective tissue disease, and lichen planus).
  • All skin surfaces for signs of secondary dermatitis (e.g., macular erythema, dryness, excoriation, linear petechiae, prurigo nodules, and lichen simplex chronicus).
  • Environmental factors (temperature, humidity).
  • Physical factors (tight, constrictive clothing).
  • Skin turgor, texture, color, temperature, and cutaneous neoplasms.

First-line studies should include the following:

  • Complete blood count with differential and platelet count.
  • Renal function (blood urea nitrogen, serum creatinine).
  • Hepatic function (transaminases, alkaline phosphatase, bilirubin).
  • Lactate dehydrogenase.
  • Thyroid function (thyroid-stimulating hormone, thyroxin levels).
  • Chest x-ray.
  • Erythrocyte sedimentation rate.

Second-line laboratory studies guided by a review of systems and a physical exam may include the following:

  • Skin biopsy (routine histology with and without direct immunofluorescence).
  • HIV screening.
  • Serum iron, total iron-binding capacity, and ferritin.
  • Fasting glucose and hemoglobin A1C.
  • Parathyroid function (calcium, phosphate, and parathyroid hormone levels).
  • Viral hepatitis screening.
  • Serum immunoglobulin E levels.
  • Serum protein electrophoresis/serum immunofixation electrophoresis.
  • Tissue transglutaminase and endomysial antibodies.
  • Serum tryptase, histamine, and/or chromogranin-A levels.
  • Urine for sediment; 24-hour urine collection for 5-hydroxyindoleacetic acid (serotonin metabolite) and methylimidazoleacetic acid (histamine metabolite).
  • Stool for occult blood, ova, and parasite.

References:

  1. Weisshaar E, Fleischer AB Jr, Bernhard JD, et al.: Pruritus and dysesthesia. In: Bolognia JL, Jorizzo JL, Schaffer JV: Dermatology. 3rd ed. Elsevier Saunders, 2012, pp 111-25.

Interventions

Note: Some citations in the text of this section are followed by a level of evidence. The PDQ Editorial Boards use a formal ranking system to help the reader judge the strength of evidence linked to the reported results of a therapeutic strategy. For more information, see Levels of Evidence.

If an underlying cause of pruritus is identified, treatment of the primary disease or correction of the underlying abnormality is primary therapy, when feasible. For example, iron supplementation in the setting of iron-deficiency anemia or thyroid supplementation for hypothyroidism should be initiated first. However, gentle skin techniques as outlined below are indicated, even if they are not expected to completely alleviate the symptoms—they should be considered helpful adjuvant therapies.

Interventions for pruritus can be categorized into four distinct groups:

  1. Prevention and elimination of provocative factors.
  2. Topical therapies.
  3. Systemic therapies.
  4. Physical modalities.

Prevention and Elimination of Provocative Factors

Patients and caregivers must be included in planning and providing care to the extent possible. Education is an important aspect of symptom control. Skin care regimens incorporate protection from the environment, good cleansing practices, and internal and external hydration.[1][Level of evidence: IV] The intensity of the regimen and the techniques employed will vary according to etiologic factors and the degree of distress associated with the pruritus.

Adequate nutrition is essential to the maintenance of healthy skin. An optimal diet should include a balance of proteins, carbohydrates, fats, vitamins, minerals, and fluids. Daily fluid intake of at least 3,000 mL is suggested as a guideline but may not be possible for some individuals.[2,3]

Aggravating factors should be avoided, including the following:

  • Fluid loss secondary to fever, diarrhea, nausea and vomiting, or decreased fluid intake.
  • Bathing with hot water.
  • Using bubble baths or soaps that contain detergents.
  • Bathing more than once a day or bathing for longer than 30 minutes.
  • Using soap and adding oil early in a bath.
  • Using a reusable fomite for scrubbing (e.g., buff-puff or loofah sponge).
  • Using scents, fragrances, and perfumes.
  • Dry environment.
  • Laundering sheets and clothing with detergent containing scents, dyes, and preservatives.
  • Using fabric softener sheets.
  • Wearing tight restrictive clothing or clothing made of wool, synthetics, or other harsh/scratchy fabric.
  • Using underarm deodorants or antiperspirants.
  • Applying topical preparations containing scents, dyes, or preservatives.
  • Emotional stress.

Alleviating factors should be promoted, as follows:

  • Applying unscented emollient creams or ointments.
  • Bathing in tepid water.
  • Using mild skin cleansers (non-soap) or soaps made for sensitive skin (e.g., Cetaphil cleanser, Dove for Sensitive Skin, Oilatum, Basis).
  • Using soap only for dirty areas; otherwise, water is sufficient.
  • Limiting bathing to 30 minutes daily or every other day.
  • Adding oil and using soap at the end of a bath or adding a colloidal oatmeal treatment early to the bath.
  • Gently washing, if needed, with a clean, fresh, soft cotton washcloth.
  • Rinsing all residue from bathing with fresh tepid water.
  • Drying off by patting skin instead of rubbing.
  • Maintaining a humid environment (e.g., using a humidifier).
  • Using cotton flannel blankets, if needed.
  • Washing sheets, clothing, and undergarments in mild soaps for infant clothing containing no scents, dyes, or preservatives (e.g., Dreft, All Free Clear, Tide Free and Gentle).
  • Using liquid fabric softener that is rinsed out in the wash (e.g., All Free Clear Fabric Softener) or avoiding fabric softener altogether.
  • Wearing loose-fitting clothing and clothing made of cotton or other soft fabrics.
  • Using distraction, relaxation, positive imagery, or cutaneous stimulation.

Heat increases cutaneous blood flow and may enhance itching. Heat also lowers humidity, and skin loses moisture when the relative humidity falls below 40%. A cool, humid environment may reverse these processes. Extensive bathing aggravates dry skin, and hot baths exacerbate fluid loss by causing vasodilation. The vasodilation results in increased blood flow, which enhances itching. Tepid baths have an antipruritic effect, possibly resulting from capillary vasoconstriction.

The goal of skin cleansing is to remove dirt and prevent odor, but actual hygienic practices are influenced by skin type, lifestyle, and culture. Bathing should be limited to 30 minutes every day or every 2 days.

Many soaps are salts of fatty acids with an alkali base, leading to excessive defatting of the skin lipids and altered skin pH, thus irritating the skin. Older adults or individuals with dry skin should limit the use of soaps to areas with apocrine glands. Plain water should suffice for cleaning other skin surfaces. Mild soaps have less soap or detergent content. Soap is a degreaser and can also irritate skin. Superfatted soaps deposit a film of oil on the skin surface, but there is no proof that they are less drying than other soaps, and they may be more expensive.

Residue left by detergents after bathing or used in laundering clothes and linens, as well as fabric softeners and antistatic products, may aggravate pruritus. Clothing detergent residue can be neutralized by the addition of vinegar (1 teaspoon per quart of water) to rinse water. Mild laundry soaps marketed for infant items also may offer a solution.

Loose-fitting, lightweight cotton clothes and cotton bed sheets are suggested. The elimination of heavy bedcovers may alleviate itching by decreasing body heat. Wool and some synthetic fabrics may be irritating. Distraction, music therapy, relaxation, and imagery may be useful to relieve symptoms.[4]

Topical Therapies

Over-the-counter products

Some topical agents—including cornstarch, talcum powder, perfumed powders, and bubble baths—can irritate the skin and cause pruritus. Cornstarch has been an acceptable intervention for pruritus associated with dry desquamation related to radiation therapy; however, it should not be applied to moist skin surfaces, areas with hair, sebaceous glands, skin folds (intertriginous zones), or areas close to mucosal surfaces, such as the vagina and rectum.[5,6] Glucose is formed when cornstarch is moistened, providing an excellent medium for fungal growth.[6]

Agents with metal ions (i.e., talcum and aluminum used in antiperspirants) enhance skin reactions during external-beam radiation therapy and should be avoided throughout the course of radiation therapy. Talcum-based agents are otherwise preferred over cornstarch-based modalities when needed, particularly for intertriginous zones. Other common ingredients in over-the-counter lotions and creams that may enhance skin reactions include alcohol, topical antibiotics, and topical anesthetics.

If pruritus is thought to be primarily related to dry skin, interventions to improve skin hydration can be employed. The main source of hydration for skin is moisture from the vasculature of underlying tissues. Water, not lipid, regulates the pliability of the epidermis, providing the rationale for using emollients.[7] Emollients reduce evaporation by forming occlusive and semi-occlusive films over the skin surface, encouraging the production of moisture in the layer of epidermis beneath the film (hence the term moisturizer).[8][Level of evidence: IV]

Knowledge about the ingredients in skin care products is essential because many ingredients may enhance skin reactions. The three main ingredients of emollients are as follows:

  • Petrolatum, which is poorly absorbed by irradiated skin and is not easily removed. A thick layer could produce an undesired bolus effect when applied within a radiation treatment field.[9][Level of evidence: IV]
  • Lanolin, which may cause allergic sensitization in some individuals.[8][Level of evidence: IV]
  • Mineral oil, which is used in combination with petrolatum and lanolin to create creams and lotions and may be an active ingredient in bath oils.

Other ingredients added to these products—such as thickeners, opacifiers, preservatives, fragrances, and colorings—may cause allergic skin reactions.

Product selection and recommendations must be made in consideration of each patient's unique needs and should incorporate variables such as the following:[1][Level of evidence: IV]

  • Individual's skin.
  • Desired effect.
  • Consistency and texture of the preparation.
  • Cost and acceptability to the patient.

Emollient creams or lotions should be applied at least two or three times daily and after bathing. Gels with a local anesthetic (0.5%–5% lidocaine) can be used on some small areas (with the caveat that gels are composed of mostly alcohol-based vehicles), as often as every 2 hours if necessary.[10][Level of evidence: IV]

Over-the-counter products containing menthol, camphor, pramoxine, or capsaicin can be used for certain areas of worst pruritus. These substances soothe, cool, or inhibit itch sensations, thereby raising the threshold for itch perception. Capsaicin-based therapies are more likely to be beneficial in pruritus of neuropathic origin.[11]

If significant skin breakdown from scratching has occurred or there is evidence of impetiginization, the use of dilute bleach baths, as is done for patients with atopic dermatitis, may be helpful. A half-cup of plain unscented sodium hypochlorite (bleach) is added to half a tub of tap water for soaking at the beginning of the bath period. If sponge bathing is required, this is equivalent to approximately 5 mL of bleach to 1 gal of water.

Prescription products

Topical steroids can reduce itching, but they reduce blood flow to the skin, resulting in thinning of the skin and increased susceptibility to injury.[12][Level of evidence: IV] Topical steroids should therefore be reserved for pruritic skin with associated primary dermatitis or inflammatory etiologies. Some practitioners may formulate their own mixture of dilute steroid-containing moisturizer to serve this purpose by compounding menthol 0.5% and fluocinonide 0.0125% into a Vanicream base (fluocinonide 0.05% 60 g, menthol 480 mg, and Vanicream QSAD 240 g). Topical steroids should not be applied to skin surfaces inside a radiation field during treatment but may be used successfully for radiation-induced dermatitis after the treatment course has concluded.

For more-severe xerosis or keratoderma, humectants may be indicated. These not only provide an occlusive or semi-occlusive barrier for water, but also chemically exfoliate an excessively cornified layer while drawing dermal fluid into the epidermal compartment. Choices include: [13][Level of evidence: IV]

  • Salicylic acid 6% cream.
  • Ammonium lactate 12% cream.
  • Creams and ointments containing urea 10% to 50%.

Humectants can significantly improve skin pliability and reduce fissuring, but care must be taken that they do not get into fissures because they can cause stinging sensations on open erosions.

Systemic Therapies

Systemic medications useful in the management of pruritus include those directed toward the underlying disease or control of symptoms. Antibiotics can reduce symptoms associated with infection. Oral antihistamines may provide symptomatic relief in histamine-related itching; however, they are not considered useful in pruritus of neuropathic origin. It is believed that the sedative effect of antihistamines adds to their antipruritic efficacy; therefore, a higher dose of antihistamine at bedtime may produce desirable potentiation of the antipruritic effect by also providing this sedative effect. If one antihistamine is ineffective, one from another class may provide relief (see Table 2).

Second-generation antihistamines have several advantages over first-generation antihistamines.[14] Decreased activity on nonhistamine receptors results in fewer adverse effects. Second-generation antihistamines dissociate slowly from histamine receptors, allowing for once-daily dosing. Compared with first-generation antihistamines, second-generation antihistamines produce less central nervous system penetration and therefore less sedation. Given these advantages, using doses of levocetirizine and desloratadine higher than those approved by the U.S. Food and Drug Administration has been suggested to provide relief for some patients with chronic urticarial conditions.[15] However, studies have produced conflicting results with cetirizine.[16,17]

Table 2. Antihistamines Used to Alleviate Pruritusa
Drug Category Medication Dose Comments Reference
SR = sustained release.
a Table abstracted from Lexicomp Online.[18]
First generation Diphenhydramine 25–100 mg q6h   [19][Level of evidence: IV]
Hydroxyzine 25–50 mg q6–8h Abrupt withdrawal may cause confusion. [20];[21][Level of evidence: I]
Cyproheptadine 4 mg q6–8h   [20][Level of evidence: IV]
Chlorpheniramine 4 mg q4–6h   [22][Level of evidence: IV]
Second generation Cetirizine 5–10 mg daily Conflicting results when 20–40 mg/day studied. [16][Level of evidence: I];[17][Level of evidence: II]
Levocetirizine 2.5–5 mg daily Safe to increase dose up to 20 mg daily; may provide better symptom control. [15,23][Level of evidence: I]
Loratadine 10 mg daily   [24][Level of evidence: I]
Desloratadine 5 mg daily Safe to increase dose up to 20 mg daily; may provide better symptom control. [23]
Fexofenadine 60 mg q12h or 180 mg daily (SR tablet)   [25][Level of evidence: I]

Several alternative medications can be used to alleviate pruritus (see Table 3). Antidepressants can have strong antihistamine and antipruritic effects.[22][Level of evidence: IV] Tricyclic antidepressants such as doxepin, amitriptyline, nortriptyline, and trimipramine have additional antihistaminic effects, making them of additional benefit in dermatological conditions such as urticaria. However, the generally more-favorable side-effect profile of selective serotonin reuptake inhibitors and selective norepinephrine reuptake inhibitors has made them the first-line agents in the management of psychogenic pruritus.[26][Level of evidence: II]

Aspirin seems to have reduced pruritus in some individuals with polycythemia vera, while increasing pruritus in others. Thrombocytopenic cancer patients should be cautioned against using aspirin. Cimetidine alone or in combination with aspirin has been used with some effectiveness for pruritus associated with Hodgkin lymphoma and polycythemia vera.[27][Level of evidence: III]

Novel agents that may be tried in recalcitrant cases of pruritus include gabapentin, pregabalin, and botulinum toxin injection, particularly for neurogenic itch such as post-herpetic neuralgia.[28,29] Aprepitant has been used successfully in the treatment of pruritus by blocking the neurokinin-1 receptor (NKR-1), which is activated by substance P.[30][Level of evidence: III]

Table 3. Alternative Medications Used to Alleviate Pruritusa
Drug Category Medication Dose Comments Reference
ESRD = end-stage renal disease; GABA = gamma-aminobutyric acid; IV = intravenously; tid = 3 times a day.
a Table abstracted from Lexicomp Online.[18]
Tricyclic antidepressant Amitriptyline 25–150 mg daily Start as 10 mg tid or 25 mg at bedtime. [29][Level of evidence: IV]
Doxepin 10–25 mg q8h   [31][Level of evidence: IV]
Selective serotonin reuptake inhibitor Fluvoxamine 50–100 mg daily   [32][Level of evidence: II]
Mirtazapine 7.5–15 mg at bedtime No value to >15 mg. [29][Level of evidence: IV]
Paroxetine 20 mg daily   [33][Level of evidence: I]
Sertraline 75–100 mg daily   [34][Level of evidence: I]
GABA analog Gabapentin 100–300 mg daily, titrated to effect Dose must be adjusted for renal dysfunction. [35][Level of evidence: I]
Pregabalin 75 mg daily Dose must be adjusted for renal dysfunction. [36][Level of evidence: I]
Sequestrant agent Ursodiol (ursodeoxycholic acid) 10–15 mg/kg of body weight per day For pruritus of cholestasis. [37][Level of evidence: IV]
Cholestyramine 4–16 g daily For pruritus of cholestasis. [37][Level of evidence: IV]
Opioid antagonist Naloxone 0.2 µg/kg of body weight per min IV Efficacy in cholestatic pruritus; conflicting results in ESRD itch. Can cause pain by antagonizing mu-receptor. [38][Level of evidence: I];[39]
Naltrexone 25–100 mg daily Efficacy in cholestatic pruritus, atopic eczema; conflicting results in ESRD itch. Can cause pain by antagonizing mu-receptor. [39];[40,41][Level of evidence: I]
Butorphanol 1–4 mg q4–6h intranasally   [42][Level of evidence: II]
Nalbuphine 2.5–5 mg IV For opioid-induced pruritus. [43][Level of evidence: IV]
Miscellaneous agent Aprepitant 80 mg daily   [30][Level of evidence: III]
Aspirin 500 mg q8–24h Only used for polycythemia vera. Positive and negative data. [31][Level of evidence: I]
Botulinum toxin 16–25 units injected into the dermatome   [29][Level of evidence: IV]
Capsaicin 0.025% Apply 5 times daily × 1 week, then 3 times daily For neurologic pruritus. [44][Level of evidence: I]
Cimetidine 200 mg q6h Only used for polycythemia vera. [31][Level of evidence: IV]
Cyclosporine 3–4.5 mg/kg of body weight per day Requires close monitoring for renal toxicity. [45][Level of evidence: I]
Pimecrolimus 1% cream Apply twice daily   [46][Level of evidence: I]

Sequestrant agents may be effective in relieving pruritus associated with renal or hepatic disease through binding and removing pruritogenic substances in the gut and reducing bile salt concentration. Choices include ursodeoxycholic acid and cholestyramine; however, cholestyramine is not always effective and produces gastric side effects.[47] Because of the association of pruritus with opioid receptor agonism, increased catabolism of endogenous opioids using rifampin in uremia may be beneficial.[48] Opioid antagonists such as naloxone, naltrexone, nalmefene, butorphanol, and nalbuphine may also have some benefit, particularly in patients with uremic pruritus.[26,40][Level of evidence: III]

Physical Modalities

Alternatives to scratching for the relief of pruritus can help the patient interrupt the itch-scratch-itch cycle. Substituting the application of emollients for scratching may help reduce skin breakdown. The application of a cool washcloth or ice over the site may be useful. Firm pressure at the site of itching, at a site contralateral to the site of itching, and at acupressure points may break the neural pathway. Rubbing, pressure, and vibration can be used to relieve itching.[49][Level of evidence: IV]; [4]

There are anecdotal reports of the use of transcutaneous electronic nerve stimulators (TENS) and acupuncture in the management of pruritus.[50] Ultraviolet phototherapy has been used with limited success to treat pruritus related to uremia.[50]

References:

  1. Detz W, Berman B: Aids that preserve hydration and mitigate its loss. Consultant 24: 46-62, 1984.
  2. Lydon J, Purl S, Goodman M: Integumentary and mucous membrane alterations. In: Groenwald SL, Frogge MH, Goodman M, et al., eds.: Cancer Nursing: Principles and Practice. 2nd ed. Jones and Bartlett, 1990, pp 594-635.
  3. Pace KB, Bord MA, McCray N, et al.: Pruritus. In: McNally JC, Stair JC, Somerville ET, eds.: Guidelines for Cancer Nursing Practice. Grune and Stratton, Inc., 1985, pp 85-88.
  4. Yasko JM, Hogan CM: Pruritus. In: Yasko J, ed.: Guidelines for Cancer Care: Symptom Management. Reston Publishing Company, Inc., 1983, pp 125-129.
  5. Hassey KM: Skin care for patients receiving radiation therapy for rectal cancer. J Enterostomal Ther 14 (5): 197-200, 1987 Sep-Oct.
  6. Maienza J: Alternatives to cornstarch for itchiness. Oncol Nurs Forum 15 (2): 199-200, 1988 Mar-Apr.
  7. Blank L: Factors which influence the water content of the stratum corneum. J Invest Dermatol 18 (2): 133-39, 1952.
  8. Klein L: Maintenance of healthy skin. J Enterostomal Ther 15 (6): 227-31, 1988 Nov-Dec.
  9. Hilderley L: Skin care in radiation therapy. A review of the literature. Oncol Nurs Forum 10 (1): 51-6, 1983 Winter.
  10. De Conno F, Ventafridda V, Saita L: Skin problems in advanced and terminal cancer patients. J Pain Symptom Manage 6 (4): 247-56, 1991.
  11. Misery L, Brenaut E, Le Garrec R, et al.: Neuropathic pruritus. Nat Rev Neurol 10 (7): 408-16, 2014.
  12. Hassey KM, Rose CM: Altered skin integrity in patients receiving radiation therapy. Oncol Nurs Forum 9 (4): 44-50, 1982 Fall.
  13. Nolan K, Marmur E: Moisturizers: reality and the skin benefits. Dermatol Ther 25 (3): 229-33, 2012 May-Jun.
  14. O'Donoghue M, Tharp MD: Antihistamines and their role as antipruritics. Dermatol Ther 18 (4): 333-40, 2005 Jul-Aug.
  15. Nettis E, Colanardi MC, Barra L, et al.: Levocetirizine in the treatment of chronic idiopathic urticaria: a randomized, double-blind, placebo-controlled study. Br J Dermatol 154 (3): 533-8, 2006.
  16. Hannuksela M, Kalimo K, Lammintausta K, et al.: Dose ranging study: cetirizine in the treatment of atopic dermatitis in adults. Ann Allergy 70 (2): 127-33, 1993.
  17. Asero R: Chronic unremitting urticaria: is the use of antihistamines above the licensed dose effective? A preliminary study of cetirizine at licensed and above-licensed doses. Clin Exp Dermatol 32 (1): 34-8, 2007.
  18. Lexicomp Online. Hudson, Ohio: Lexi-Comp, Inc., 2021. Available online with subscription. Last accessed Feb. 9, 2024.
  19. Geltman RL, Paige RL: Symptom management in hospice care. Am J Nurs 83 (1): 78-85, 1983.
  20. Levy M: Symptom control manual. In: Cassileth BR, Cassileth PA, eds.: Clinical Care of the Terminal Cancer Patient. Lea and Febiger, 1982, pp 214-262.
  21. Monroe EW, Bernstein DI, Fox RW, et al.: Relative efficacy and safety of loratadine, hydroxyzine, and placebo in chronic idiopathic urticaria. Arzneimittelforschung 42 (9): 1119-21, 1992.
  22. Winkelmann RK: Pharmacologic control of pruritus. Med Clin North Am 66 (5): 1119-33, 1982.
  23. Staevska M, Popov TA, Kralimarkova T, et al.: The effectiveness of levocetirizine and desloratadine in up to 4 times conventional doses in difficult-to-treat urticaria. J Allergy Clin Immunol 125 (3): 676-82, 2010.
  24. Langeland T, Fagertun HE, Larsen S: Therapeutic effect of loratadine on pruritus in patients with atopic dermatitis. A multi-crossover-designed study. Allergy 49 (1): 22-6, 1994.
  25. Kaplan AP, Spector SL, Meeves S, et al.: Once-daily fexofenadine treatment for chronic idiopathic urticaria: a multicenter, randomized, double-blind, placebo-controlled study. Ann Allergy Asthma Immunol 94 (6): 662-9, 2005.
  26. Zhang H, Yang Y, Cui J, et al.: Gaining a comprehensive understanding of pruritus. Indian J Dermatol Venereol Leprol 78 (5): 532-44, 2012 Sep-Oct.
  27. Daly BM, Shuster S: Effect of aspirin on pruritus. Br Med J (Clin Res Ed) 293 (6552): 907, 1986.
  28. Scheinfeld N: The role of gabapentin in treating diseases with cutaneous manifestations and pain. Int J Dermatol 42 (6): 491-5, 2003.
  29. Yosipovitch G, Samuel LS: Neuropathic and psychogenic itch. Dermatol Ther 21 (1): 32-41, 2008 Jan-Feb.
  30. Ständer S, Siepmann D, Herrgott I, et al.: Targeting the neurokinin receptor 1 with aprepitant: a novel antipruritic strategy. PLoS One 5 (6): e10968, 2010.
  31. Krajnik M, Zylicz Z: Understanding pruritus in systemic disease. J Pain Symptom Manage 21 (2): 151-68, 2001.
  32. Ständer S, Böckenholt B, Schürmeyer-Horst F, et al.: Treatment of chronic pruritus with the selective serotonin re-uptake inhibitors paroxetine and fluvoxamine: results of an open-labelled, two-arm proof-of-concept study. Acta Derm Venereol 89 (1): 45-51, 2009.
  33. Zylicz Z, Krajnik M, Sorge AA, et al.: Paroxetine in the treatment of severe non-dermatological pruritus: a randomized, controlled trial. J Pain Symptom Manage 26 (6): 1105-12, 2003.
  34. Mayo MJ, Handem I, Saldana S, et al.: Sertraline as a first-line treatment for cholestatic pruritus. Hepatology 45 (3): 666-74, 2007.
  35. Gunal AI, Ozalp G, Yoldas TK, et al.: Gabapentin therapy for pruritus in haemodialysis patients: a randomized, placebo-controlled, double-blind trial. Nephrol Dial Transplant 19 (12): 3137-9, 2004.
  36. Solak Y, Biyik Z, Atalay H, et al.: Pregabalin versus gabapentin in the treatment of neuropathic pruritus in maintenance haemodialysis patients: a prospective, crossover study. Nephrology (Carlton) 17 (8): 710-7, 2012.
  37. Kremer AE, Oude Elferink RP, Beuers U: Pathophysiology and current management of pruritus in liver disease. Clin Res Hepatol Gastroenterol 35 (2): 89-97, 2011.
  38. Bergasa NV, Alling DW, Talbot TL, et al.: Effects of naloxone infusions in patients with the pruritus of cholestasis. A double-blind, randomized, controlled trial. Ann Intern Med 123 (3): 161-7, 1995.
  39. Wang H, Yosipovitch G: New insights into the pathophysiology and treatment of chronic itch in patients with end-stage renal disease, chronic liver disease, and lymphoma. Int J Dermatol 49 (1): 1-11, 2010.
  40. Peer G, Kivity S, Agami O, et al.: Randomised crossover trial of naltrexone in uraemic pruritus. Lancet 348 (9041): 1552-4, 1996.
  41. Malekzad F, Arbabi M, Mohtasham N, et al.: Efficacy of oral naltrexone on pruritus in atopic eczema: a double-blind, placebo-controlled study. J Eur Acad Dermatol Venereol 23 (8): 948-50, 2009.
  42. Dawn AG, Yosipovitch G: Butorphanol for treatment of intractable pruritus. J Am Acad Dermatol 54 (3): 527-31, 2006.
  43. Jannuzzi RG: Nalbuphine for Treatment of Opioid-induced Pruritus: A Systematic Review of Literature. Clin J Pain 32 (1): 87-93, 2016.
  44. Wallengren J, Klinker M: Successful treatment of notalgia paresthetica with topical capsaicin: vehicle-controlled, double-blind, crossover study. J Am Acad Dermatol 32 (2 Pt 1): 287-9, 1995.
  45. Weisshaar E, Szepietowski JC, Darsow U, et al.: European guideline on chronic pruritus. Acta Derm Venereol 92 (5): 563-81, 2012.
  46. Kaufmann R, Bieber T, Helgesen AL, et al.: Onset of pruritus relief with pimecrolimus cream 1% in adult patients with atopic dermatitis: a randomized trial. Allergy 61 (3): 375-81, 2006.
  47. Abel EA, Farber EM: Malignant cutaneous tumors. In: Rubenstein E, Federman DD, eds.: Scientific American Medicine. Scientific American, Inc, Chapter 2: Dermatology, Section XII, 1-20, 1992.
  48. Miguet JP, Mavier P, Soussy CJ, et al.: Induction of hepatic microsomal enzymes after brief administration of rifampicin in man. Gastroenterology 72 (5 Pt 1): 924-6, 1977.
  49. Dangel RB: Pruritus and cancer. Oncol Nurs Forum 13 (1): 17-21, 1986 Jan-Feb.
  50. Bernhard JD: Clinical aspects of pruritus. In: Fitzpatrick TB, Eisen AZ, Wolff K, et al., eds.: Dermatology in General Medicine. 3rd ed. McGraw-Hill, 1987, Chapter 7, pp 78-90.

Latest Updates to This Summary (10 / 26 / 2022)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Editorial changes were made to this summary.

This summary is written and maintained by the PDQ Supportive and Palliative Care Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the pathophysiology and treatment of pruritus. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Supportive and Palliative Care Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Pruritus are:

  • Larry D. Cripe, MD (Indiana University School of Medicine)
  • Megan Reimann, PharmD, BCOP (Total CME)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website's Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Supportive and Palliative Care Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as "NCI's PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary]."

The preferred citation for this PDQ summary is:

PDQ® Supportive and Palliative Care Editorial Board. PDQ Pruritus. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: https://www.cancer.gov/about-cancer/treatment/side-effects/skin-nail-changes/pruritus-hp-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389231]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website's Email Us.

Last Revised: 2022-10-26